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The Top Mass

● The top quark mass is interesting 
because ...

● Applications at the LHC:

– Calibrating energies of highly 
boosted jets

● It can teach us about the Higgs

– The top quark and the Higgs both 
couple to the W boson

– Top mass and W mass determine 
SM Higgs mass

● Measure to constrain Higgs 
mass

● Test of standard model

1-Sigma Constraint on 
Higgs mass (2006)

Higgs and top quark 
couplings to W boson



3

Identifying tt
● Tops decay to W's a b's

● Three very different types of mass 
analyses depending on W decay modes
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Identifying tt
● Tops decay to W's a b's

● Three very different types of mass 
analyses depending on W decay modes

– Both W's decay leptonically: “dilepton 
channel”. 

● Tiny backgrounds, low stats

– Both W's decay hadronically: “all 
hadronic channel”.

● Huge backgrounds, high stats

– One of each: “lepton+jets channel”.

● Low backgrounds, high stats
● Identify b's (reduces background)

– Use long b-lifetime: may travel many 
mm before decay

– Use tracking to locate displaced 
vertex

Can identify b's from displaced 
secondary vertex
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Determining the Mass

● Event reconstruction challenges:

– Which partons came from which top 
and which W?

● Jet reconstruction challenges:

– Have to measure energies of decay 
quarks to get top mass

● But can't measure quarks 
directly, see spray of particles

● Leads to many “Jet Energy 
Scale” (JES) uncertainties

– Black: full uncertainty on 
quark energy

– 3-4 GeV uncertainty on top mass

Which jets belong to 
which invariant mass?

Calibrated JES  
Uncertainties
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Controlling the JES Uncertainty

● Option 1: Use hadronic W decays

– Assume all jets in event have same JES

● Constrain JES to reconstruct proper 
W mass

● Invariant top mass in simulation 
increases with JES

– Obviously impossible in dilepton channel Expected top mass depends on JES
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Controlling the JES Uncertainty

● Option 1: Use hadronic W decays

– Assume all jets in event have same JES

● Constrain JES to reconstruct proper 
W mass

● Invariant top mass in simulation 
increases with JES

– Obviously impossible in dilepton channel

● Fit for JES and top mass simultaneously

– JES uncertainty becomes statistical!

– Caveat: left with residual systematics 
due to assuming same JES for all jets

● Most top analysis do this, but JES 
still largest uncertainty on world 
average top mass

Expected top mass depends on JES

top mass vs JES simultaneous fit
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Controlling the JES Uncertainty

● Option 2: don't use jet energy!

– Decay length of b-tagged jets 

– Transverse momentum of leptons 

● Evaluate top mass from mean decay 
length and mean lepton momentum

– Plenty of stats at LHC: systematics 
are what are important

– Decay length systematics limited by 
calibration of simulation to data 

– Lepton systematics limited by 
background modeling, simulation 
calibration, QCD radiation

● Actively working on them

Lepton Transverse Momentum

Results with 1.9 fb-1 
in Lepton+Jets Channel:

Combined decay length and 
lepton transverse momentum

Decay Length

Lepton Transverse  Momentum
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Template Based m
t

● One of two “standard” methods for measuring the top mass

– Make probability distribution functions (templates) for signal and 
backgrounds

● Fit data, integrating over all allowed jet and lepton 
combinations

– Straightforward and reliable

Example: Signal chi2 for CDF Lepton+Jets Template Fit

m
t
 Constraints

m
W
 Constraints

Measurement Constraints Unclustered Energy 
Constraints
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L+J Template Method Results

● Number of background events extracted 
from direct fit

– W+jet, QCD backgrounds largest

– Constrained within uncertainties 
determined by cross section 
measurements

● Assign non b-tagged jets to W decay

– In manner which best reproduces the 
W mass

● Dominant systematics:

– Residual jet energy scale, behavior of 
b-jet (fragmentation, semileptonic 
fractions, etc)

CDF L+J Results (1.9 fb-1)

Example of a template for tt signal
(in 2D to Constrain JES) 
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Dilepton Template Method Results

● Dileptons channel differences

– Much lower statistics and even 
smaller backgrounds

– Underconstrained: two neutrinos 
you can't measure!

● Integrate over all possible 
neutrino directions weighted 
by probability of consistency 
with observed objects

Dilepton Results (1.9 fb-1)

Combined Dilepton & L+J Results (1.9 fb-1)
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Template Systematics

● Dileptons channel differences

– Much lower statistics and larger 
backgrounds

– Underconstrained: two neutrinos 
you can't measure!

● Integrate over all possible 
neutrino directions weighted 
by probability of consistency 
with observed objects

● Examples of systematics shown

– Note large difference in jet energy 
scale sensitivity Dilepton Results (1.9 fb-1)

Combined Dilepton & L+J Results (1.9 fb-1)

Systematics for these analyses
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Matrix Element m
t

● Extract more information from each event

– Find mass likelihood event by event based on theoretical Matrix 
Element calculation for signal/background

Signal Probability Proportional to:

“Matrix Element” 
(Probability Amplitude)

Top mass and JES 
Likelihood
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Matrix Element m
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● Extract more information from each event

– Find mass likelihood event by event based on theoretical Matrix 
Element calculation for signal/background

– Based upon measured kinematics, x (and hypothesized, y)

Signal Probability Proportional to:

“Matrix Element” 
(Probability Amplitude)

Probability of measured 
momenta, y, given x and JES

Top mass and JES 
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Matrix Element m
t

● Extract more information from each event

– Find mass likelihood event by event based on theoretical Matrix 
Element calculation for signal/background

– Based upon measured kinematics, x (and hypothesized, y)

Signal Probability Proportional to:

“Matrix Element” 
(Probability Amplitude)

Probability of measured 
momenta, y, given x and JES

Top mass and JES 
Likelihood
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incoming momenta 
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Matrix Element m
t

● Extract more information from each event

– Find mass likelihood event by event based on theoretical Matrix 
Element calculation for signal/background

– Based upon measured kinematics, x (and hypothesized, y)

– Integrate over unknowns, sum over probability weighted parton 
associations. 

Signal Probability Proportional to:

“Matrix Element” 
(Probability Amplitude)

Probability of measured 
momenta, y, given x and JES

Top mass and JES 
Likelihood

Sum over parton 
combinations

 Probabilities of 
incoming momenta 

Integrate over 
kinematics
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Matrix Element m
t

● Extract more information from each event

– Find mass likelihood event by event based on theoretical Matrix 
Element calculation for signal/background

– Based upon measured kinematics, x (and hypothesized, y)

– Integrate over unknowns, sum over probability weighted parton 
associations. And normalize.

Signal Probability Proportional to:

“Matrix Element” 
(Probability Amplitude)

Probability of measured 
momenta, y, given x and JES

Top mass and JES 
Likelihood

Normalizations

Sum over parton 
combinations

 Probabilities of 
incoming momenta 

Leads to very precise results (2.7 fb-1):
Dominant Systematics: Residual jet energy scale, generator uncertainties

Integrate over 
kinematics
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All Hadronic

Results (1.9 fb-1)

Residual jet energy scale, Pileup, Generator, 
QCD radiation, Background Modeling systematics 
all play a modest role

Final Mass Distribution

● Special challenges in this channel

– 1/400 S/B from base event 
selection

– 6 factorial combinations of parton 
assignments

● Solutions:

– Require two b-tags in event

– Use neural network event shape 
selection (S/B: close to 1/1)

● Fit mass with signal, mismatched 
signal, background shapes
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D0+CDF Combination

CDF Mass Results in the Combination Associated Higgs Fit Results

● Using Best Linear Unbiased Estimator technique

– Correlations estimated between 12 types of uncertainties

● Electroweak fits: SM Higgs mass now < 154 GeV/c2 at 95% confidence level!

– Counting LEP lower limit of M
H
>114 GeV/c2

,
 upper limit rises to 185 GeV/c2
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Summary and Outlook

● CDF Top group has performed many high precision top mass measurements

– Not enough time to talk about all of them

– Some others in backup slides. For full details, see: 
http://www-cdf.fnal.gov/physics/new/top/public_mass.html 

● Dominant jet energy scale systematic is coming under control

– Using hadronic W mass calibration

– Using alternate variables the LHC can ~completely eliminate it 

● Work to be done

– Must be especially careful with systematics in a high precision era

– More sophisticated combination procedures

– Limitations of Leading Order simulation must be properly considered

http://www-cdf.fnal.gov/physics/new/top/public_mass.html
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Backups
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CDF

● Tevatron collides pp at world's 
highest energies

● Beam luminosity has been 
steadily improving

– Total of ~5 fb-1 has been 
delivered to each detector

● About 80% data 
acquisition efficiency

● Recent analyses use 
about 3 fb-1 Tracking

Calorimetry

Muon 
Systems
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Lepton + Jets Matrix Element

● Makes very few assumptions about 
kinematics

– Integrates over 19 parameters 
representing probabilistic 
kinematic spreads

● Top and W masses, boost of 
system, directions and 
masses of each jet

– Specialized integration 
techniques to make this possible

● Neural network trained to 
distinguish signal and background

– Background count determined 
from this output

Example integration variables: discrepancies
in measured jet direction

Results (2.7 fb-1)

Dominant Systematics: Residual jet energy scale, 
generator uncertainties
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Dilepton Matrix Element

● Mass likelihood evaluated for signal and 
bkg hypotheses simultaneously

– Based on tagging information, priors 
(small p's), kinematic information 
(x), for signal and backgrounds, k

● Key feature: finds best neural network

– Optimize NN for mass resolution, 
not signal purity. 20% improvement 
in statistical uncertainty.

● First dilepton analysis to be 
limited by systematics instead of 
statistics!

Results (1.9 fb-1)

Dominant Systematic: Jet energy scale

NN Performance Validation
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Future Improvements

● Mass results are now more 
systematically limited

– But even without systematic 
improvements will have better than 
1% precision at CDF

– Work on improving systematics still 
ongoing

● Already far ahead of where we 
projected we would be at this 
luminosity!

Past Expectations and Future M
T
 

Projections at CDF
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